SYNOPSIS OF THE THESIS

Vendor-Buyer Supply Chain Management models with and without backorder - an inspection at vendor site

Doctoral Thesis submitted

In partial fulfillment of the requirements for the award of the degree of

DOCTOR OF PHILOSOPHY

In

MANAGEMENT

By

ABHAY KUMAR SINHA

Under the Guidance of

Dr. Danish Ali Khan

Research Co-Supervisor Professor, Department of Computer Application National Institute of Technology Jamshedpur, Jharkhand Dr. Shree Ranjan

Research Supervisor Professor, Head of Department IT ICFAI University Ranchi, Jharkhand

ICFAI UNIVERSITY JHARKHAND RANCHI

December, 2019

CONTENTS

1.	Introduction	1
2.	Research Motivation	4
3.	Literature Review	5
4.	Research Gap	34
5.	Research Problem	34
6.	Research Objective	35
7.	Assumptions / Hypothesis	35
8.	Scope of the Research	37
9.	Research Methodology	37
10	Data Analysis	39
11.	Finding and Conclusions	39
12	Contributions	40
13	Limitations and Scope for future research	42
14.	Keywords	42
15.	Bibliography	43

1. Introduction

Every business has to maintain some sort of inventory and inventory management becomes it's one of the important activities. The major activities of inventory management are the flow of goods and flow of information. The goods move downstream from the supplier to the manufacturer, the manufacturer to the buyer (the dealer) and the buyer to the consumer. Information, initially generated from the customer in the form of demand, flow up-stream to the buyer (dealer), from the buyer to the manufacturer and finally from the manufacturer to suppliers of raw materials.

Industries need to cut the cost of their operation because of tough competition in the market. The inventory management is not just storing goods in an inventory but it deals with scheduling production of items, location of inventories, when to order, how much to order, how much quantities of items have to be shipped, frequency of shipments and many more with an objective to minimize the total expected cost of these operations. Research work done in inventory management tried to reduce the total expected cost of inventory management and guided industries to plan their activities accordingly to reduce cost. The experiment of JIT (Just in Time) is one example of this type of activity where inventory management plays an important role.

Ford Whitman Harris (1913) had done first research on inventory management and had given the first basic formula for Economic Order Quantity.

Q^*	(EOQ)	=	$\sqrt{\frac{2dK}{h}}$
Where	d	:	Annual demand
	Κ	:	Ordering cost
	h	:	Holding cost

(Goyal, 1977) had initiated research work on integrated inventory management by giving "An integrated inventory model for a single supplier single customer problem". The research work was followed by (Banerjee, 1986) "A joint economic-lotsize model for purchaser and vendor" who had given Joint Economic-Lot-Size (JELS). 1995) discussed multi-buyer inventory (Lu, one vendor management. (Salameh&Jaber,2000) had discussed inventory management with imperfect production quality. (Cárdenas-Barrón, 2000) had corrected (Salameh&Jaber, 2000) formula for calculation of economic order quantity (EOQ) and (Wee et al., 2007) had further extended (Salameh&Jaber,2000) work by considering permissible shortage backordering. (Khan et al., 2011) extended (Salameh & Jaber, 2000) research work by considering the inspection process errors. (Hsu & Hsu,2012b) had extended (Wee et al.,2007) model and gave inventory management for imperfect production quality and imperfect inspection with shortage backordering.

Inspection of items had been conducted by the buyer after the arrival of a fresh lot of items as mentioned in earlier research works. The imperfect production process could produce some defective items during the production. The buyer, after the arrival of lot, conducts 100% inspection of items, before the items are sold in the market for filtering out defective items.

The research work in this thesis is for imperfect production quality and imperfect inspection process. The inspection process is not done by the buyer as mentioned in earlier research work. The inspection process has been done by the vendor along with the production of items. It is assumed that the rate of inspection is greater than the production of items, the inspection process also finished just after the

2

end of the production of items. There is no extra delay due to the inspection process. As the inspection process is also imperfect, it may classify non-defective items as defective (type I inspection error) and defective items as non-defective (type II inspection error). Because of type II inspection error, some defective items classified as non-defective item, could be sold in the market. After detection of defects consumer return back (sales return) defective items to the buyer (here the dealer) and get a replacement with a non-defective item. Considering these assumptions following models have been developed. These models are tested and compared with the help of numerical example using the same numerical values that had been consistently used by earlier related inventory management research works.

- Integrated model where backorder has not allowed
- The Buyers independent decision where backorder has not allowed
- Integrated model where backorder has allowed
- The Buyers independent decision where backorder has allowed

2. Research Motivation

Worldwide organizations are looking for cost-cutting by the management of its operations. Organizations that are manufacturing non-perishable items are coordinating manufacturing schedules, supply of items and inventories to reduce their operational cost. Optimization of supply chain management helps in cutting down operational costs.

The researches in the optimization of supply chain management have motivated this research to contribute to reduction of the operational cost of an organization. There is a lot of scope of research in the area of supply chain management.

Supply chain management research is a cross-platform research, based on mathematical modeling which includes Computer Science, Economics, Management and Mathematics. Mathematics is used for optimization of operational cost and guide production and shipment quantity and schedule (Economics and Management). The flow of information (from consumer to manufacturer and finally to the chain of suppliers) and the monitoring of levels of inventory items on a continuous or periodic basis involves Computer Science.

3. Literature Review

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
1	U	Research Paper	Goyal, S.	1977	(Goyal,1977) developed integrated model for single customer	(Goyal,1977) models
	inventory model for a single supplier	International	K.		and single supplier and compared results of integrated	was simple model and
	single customer problem.	Journal of Production			solution with individual solutions.	did not consider rate of
	1	Research			This model was first integrated model.	production.
					Figure 3.1 Costs of integrated model	
					Cost to the supplier = $Z \cdot V(C(t^*), S(t^* \cdot K(t^*)))$	
					Cost to the customer = $(1 - Z)V(C(t^*), S(t^* \cdot K(t^*)))$	
					where $Z = \frac{V(S(t_0 \cdot K(t_0)))}{V(S(t_0 \cdot K(t_0))) + V(C(t_0))}$	
					Source: (Goyal,1977)	
					Where for customer \Rightarrow D = demand per unit of time, R = Cost	
					of purchase order, $h1 = customer stock holding cost per unit$	
					per unit time, $t = time interval between successive order,$	
					$V(C(t)) = Variable cost unit of time, for supplier => M = C_{1}$	
					Setup cost, h^2 = suppler stock holding cost per unit per unit	
					time, T = time interval between successive set-up, K = T/t a positive integer, $V(S(tK)) =$ variable cost per unit of time.	
2	A joint economic-	Research Paper	Banerjee,	1986	(Banerjee,1986) developed Joint Economic-Lot-Size (JELS)	It is not realistic for the
	lot-size model for		A.		and Joint Total Relevant cost (JTLC) for supply chain	
	purchaser and vendor.	Decision sciences	² 1 .			
					products as per the order received from the purchaser on a lot-	lot-for-lot each time
					for-lot basis under deterministic condition, (Banerjee,1986).	after receiving an order

Srl.	Title of paper	Literature	Author	0	Contribution	Gap / Future work
No		type		Year	Figure 3.2 shows inventory levels of the purchaser and the	from the purchaser
					vendor over time. At reorder point the purchaser placed order,	-
					after t_1 time production started by the vendor which continue	produce more items
					for t_2 time. After completion of production the lot of items	and send items in
					shipped to the purchaser which reached to the purchaser in t_3	
					time. Thus $t = t_1 + t_2 + t_3$. Figure 3.2	model and did not
					Inventory level of the purchaser and the vendor Purchaser's and Vendor's Inventory Time Plats	consider realistic
					The formulation of costs for the purchaser and the vendor is	assumptions like imperfect production quality, stochastic inventory etc.
					shown in the Figure 3.3.	

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					Figure 3.3	
					Summary of costs for individual optimal policies Summary of Relevant Costs and Individual Optimal Policies	
					Purchaser Vendor	
					General cost function $TRC_p(Q) = \frac{DA}{Q} + \frac{Q}{2}rC_p$ (1) $TRC_s(Q) = \frac{DS}{Q} + \frac{DQ}{2P}rC_r$ Economic 2D4	(4)
					$\frac{1}{ ct size} \qquad Q_p^* = \sqrt{\left(\frac{2DA}{rC_p}\right)} \qquad (2) \qquad Q_r^* = \sqrt{\left(\frac{2PS}{rC_r}\right)}$ Minimum	(5)
					total cost $TRC_p(Q_p) = \sqrt{(2D4rC_p)}$ (3) $TRC_p(Q_p) = D\sqrt{(2SrC_p/P)}$	(6)
					Note: $TRC_p(Q)$ = purchaser's annual total relevant cost for any lot size Q , $TRC_p(Q)$ = ven annual total relevant cost for any lot size Q , Q_p^{*} = purchaser's economic lot size (ELS), Q_p^{*} = ven economic lot size (ELS).	
					Source: (Banerjee,1986)	
					The formulation of costs for the joint policy is shown i	the
					Figure 3.4.	
					Figure 3.4 JTRC and JELS – Q _i *. JTRC(Q) = $\frac{p}{q}(S+A) + \frac{q}{p}r(\frac{p}{p}C_{y}+C_{p})$. $Q_{f}^{*} = \sqrt{\left[\frac{2D(S+A)}{r(\frac{p}{p}C_{y}+C_{p})}\right]}$	
					Source: (Banerjee,1986)	
					Where $D =$ annual demand, $S =$ setup cost for the vendor	A =
					ordering cost per order for the purchaser, $\mathbf{r} = annual$ inver	tory
					carrying charges, C_v = unit production cost occurred to	the
					vendor, C_p = unit purchase cost to the purchaser and Q = 0	rder
					or production lot size in units	
3	Determination of Production Cycle and Inspection	Management	Lee, H. L. & Rosenblatt,	1987	(Lee&Rosenblatt,1987) considered production of single on single machine where at the beginning of production	the process machine goes
	Schedules in a	Science	M. J.		production process is in an "in-control" state. It prod	lced

Srl.	Title of paper	Literature	Author]		Contribution	Gap / Future work
No	Production System.	type		Year	perfect quality items with negligible number of defective	for wear and tear and it
	r ioduction System.					101 wear and tear and it
					items.	impact on the quality
					As time goes the production process deteriorates and shifted	of item produced.
					to "out-of-control" state and produced defective and sub-	(Lee&Rosenblatt,1987)
					standard items. (Lee&Rosenblatt,1987) assumed that the	
					production process remain in "in-control" state for a random	had tried to find impact
					time duration which is exponentially distributed with mean	of the wear and tear on
					1/μ.	production.
					(Lee&Rosenblatt,1987) assumed that inspections of the	
					production process were carried at end of each production run.	(Lee&Rosenblatt,1987)
					If the production process was found in "out-of-control" state,	discussed production of
					a restoration work was carried out at some cost. At start of	imperfect quality items
					each production cycle, production is in "in-control" state.	during the production.
					Using above assumptions (Lee&Rosenblatt,1987) tried to	
					derive Economic Manufacturing Quantity for a production	They did not focus
					cycle and inspection schedule.	much on impact on
					Figure 3.5	supply chain.
					The optimal production run duration T for n inspections	
					per run	
					$T^{\bullet}(n) = \left[\frac{2(K+nv)D}{P(P-D)h + D(s\alpha P/\mu - r)\mu^2/n}\right]^{1/2}$	
					Source: (Lee&Rosenblatt,1987)	
					Where $D = Demand$ rate, $P = Production$ rate, $T = Cycle$ time	

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					for production lot, $K = Setup cost$, $s = cost incurred by$	
					producing a defective item (rework, repair, replacement, loss	
					of goodwill, etc.), α = percentage of defective units, υ = cost	
					of inspecting the production process, $r = cost$ of restoring the	
					production process, $n =$ number of inspections per production	
					run, $n \ge 1$, T_i = elapse time from beginning of production run	
					until the i th inspection.	
4	A joint	Research Paper	Goyal, S.	1988	(Goyal,1988) generalized (Banergee,1968) model by	(Goyal,1988) proposed
	economic-lot-size model for purchaser	Decision	K.		removing lot-for-lot policy, assumed that the vendor may	multi shipment policy
	and vendor: a	sciences			produce an integer multiple of order lot quantity and supply	in inventory
	Comment				multiple lots from a production run. The economic order	management and
				quantity (EOQ) obtained by him is shown in the figure 3.6	showed that it was	
						better than lot-to-lot
					Economic Order Quantity (EOQ) for the purchaser	production policy. This
					$O(n) = \begin{pmatrix} 2D(A + \frac{3}{n}) \\ \frac{3}{n} \end{pmatrix}^{\frac{1}{2}}$	model becomes basic
					$Q(n) = \left(\frac{2D(A + \frac{S}{n})}{r(C_{\varrho} - C_{\nu} + nC_{\nu}(1 + \frac{D}{p}))}\right)^{\frac{1}{2}}$	model for future
					Source: (Goyal,1988)	models
					He calculated joint total relevant cost (JTRC) for the vendor	
					and the purchaser. The JTRC is given in figure 3.7	
					Figure 3.7 Joint Total Relevant Cost (JTRC)	
					$JTRC(n) = [2Dr(A + \frac{S}{n})(C_{\varrho} - C_{\nu} + nC_{\nu}(1 + \frac{D}{P}))]^{1/2}$	
					Source: (Goyal,1988)	
					The optimal value of n* is calculated using the condition	

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					given in the figure 3.8	
					Figure 3.8	
					The optimal value condition for n*	
					$n^{*}(n^{*}+1) \ge \frac{S(C_{\varrho}-C_{\nu})}{2} \ge n^{*}(n^{*}-1)$	
					$n^{*}(n^{*}+1) \ge \frac{S(C_{\varrho} - C_{\nu})}{AC_{\nu}(1 + \frac{D}{P})} \ge n^{*}(n^{*}-1)$	
					Source: (Goyal,1988)	
					Where $D =$ annual demand, $S =$ setup cost for the vendor, $A =$	
					ordering cost per order for the purchaser, $r =$ annual inventory	
					carrying charges, C_v = unit production cost occurred to the	
					vendor, C_Q = unit purchase cost to the purchaser, Q = order or	
					production lot size in units and n = multiple of order such that	
					production quantity = nQ.	
5	An integrated JIT	Research Paper	Banerjee,	1995	As per (Banerjee&Kim,1995) in the Just in Time production	(Banerjee&Kim,1995)
	inventory model	International	A. & Kim, S. L		system a buyer may order some fixed quantity Q at a regular	had discussed lot-to-lot
		Journal of			interval of time. They pointed out that if the vendor	production for JIT and
		Operation & Production			(manufacturer) produced ordered items for a lot-for-lot policy	showed inventory
		management			then there would be production set-ups for each Q quantity	levels for the vendor
					produced, which is very frequent. They suggested it would be	and the buyer.
					more economical that the vendor will produce NQ items in	
					one production lot and send N number of Q items to the	
					vendor and the same time raw material supplier also supply	
					raw materials at regular intervals. The inventory levels for the	
					buyer, the vendor (finished items and raw material) is	
					explained in the figure 3.9	

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
		-7.6-			Figure 3.9 The inventory levels for the buyer, the vendor (finished items and raw material) Inventory Averge inventory = Q/2 Retail	
					Inventory Production (plant) $(N = 4)$ Average inventory = $Q\{(2 - N) D P + N - 1\}/2$ Batch size = NQ Q P Time	
					Raw materials	

	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
					Figure 3.10 Calculation of Q* in JIT $Q^* = (\alpha / \beta)^{\frac{1}{2}}$	
					where $\alpha = 2D[(A_mM + 5)/N + A_r]$ and $\beta = Nh_mD'(MP) + h_p](2 - MD/P + N - 1] + h_r$	
					Source: (Banerjee&Kim,1995)	
					With optimal condition for M^* (figure 3.11) and condition for	
					N* (figure 3.12)	
					Figure 3.11 Condition for M* in JIT $M^*(M^* - 1) \le \delta' \phi \le M^*(M^* + 1)$ Source: (Banerjee&Kim,1995)	
					Figure 3.12 Condition for N* in JIT $N^*(N^* - 1) \le \eta! \theta \le N^*(N^* + 1)$, where $\eta = (A_mM + S)(h_0(2D/P - 1) + h_r)$ and $\theta = A_r(D/P)(h_m/M + h_0(1 - D/P))$, Source: (Banerjee&Kim,1995)	
					Where A_m = raw material ordering cost, A_r = Supplier's order processing and shipment cost, D = demand rate, h_m = raw material holding cost, h_p = finished goods inventory holding cost, h_r = inventory holding cost for the buyer, M = raw material lot size factor Q_m = NQ/M, N = production lot size factor Q_p = NQ, Q delivery lot size, S = production set-up cost.	
-	A one-vendor multi-buyer	Research Paper	Lu Lu	1995	(Lu,1995) minimize the vendor's total annual cost for single	Tried to minimize only

Srl.	Title of paper	Literature	Author		Contribution	Gap / Future work	
No	integrated inventory model.	type European Journal of Operational Research			vendor and single buyer with subject to maximum cost that the buyer is ready to pay where the vendor has advantage over the buyer in purchase negotiation and know the buyer's annual demand and order frequency in advance. (Lu,1995) also had given heuristic approach to minimize the vendor's total annual cost for single vendor and multiple buyers. (Goyal,1988) model had an assumption that the vendor will only supply items to purchaser after completion of entire production lot. (Lu,1995) had relaxed	annual cost in th integrated model.	
7	A one-vendor multi-buyer integrated inventory model: A comment.	Research Paper European Journal of Operational Research	Goyal, S. K.	1995	this assumption in this research work. (Goyal,1995) extends work done by (Goyal,1988) and (Lu,1995) and given an approach which is capable of giving better relevant total costs of the single vendor-single purchaser production-inventory systems. (Goyal,1995) had taken ratio of (i+1) th shipment to i th shipment equal to n. Economic Order Quantity, EOQ for k number of lots per production is given in the figure 3.13 and minimum joint total annual cost is given in figure 3.14. Figure 3.13 The Economic Order Quantity for k lots/production $q(k) = \sqrt{\frac{2D(S+kA)(n^2-1)}{r(n^{2k}-1)(C_Q + \frac{C_V}{n})}}$ Source: (Goyal,1995)		ant gle

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
					Figure 3.14 The Minimum Joint Total Annual Cost $JTRC(q(k)) = \sqrt{\frac{2rD(C_Q + C_v/n)(n-1)(n^k+1)(S+kA)}{(n+1)(n^k-1)}}$ Source: (Goyal,1995) Where JTRC = Joint annual Total Relevant Cost, r = vendor's annual rate of production, P = vendor annual rate of production, S = vendor's setup cost per setup, C _v = vendor's unit manufacturing cost, Q = production lot quantity per production, k = number of shipments per production, D = annual demand rate, P = vendor annual rate of production, n = P / D, C _Q = unit purchase price paid by purchaser, q _i = size of i th shipment	
8	decreasing time-	Research Paper European Journal of Operational Research	Benkherouf , L.	1995	(Benkherouf,1995) had given optimal replenishment policy for items that are continuously deteriorating over time at a constant rate and demand rates are deceasing over known time period with shortage in inventory is allowed.	· · · · ·
9	production-	European Journal of Operational	Hill, R. M.	1997	As per (Hill,1997) none of policies given by (Lu,1995) and (Goyal,1995) was have optimal solution. As per him optimal solution could be obtained when successive shipment quantities within a production batch should increased by a fixed factor. The first shipment quantity q* is given in figure 3.15	(Lu,1995) and (Goyal,1995) models and pointed out these models are not giving

Srl.	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
					and mean total cost for q^* is given in figure 3.16.	
					Figure 3.15	
					The first shipment quantity	
					$q^* = \left(\frac{2(A_1 + nA_2)D\lambda(\lambda^2 - 1)}{(h_1 + \lambda h_2)(\lambda^{2n} - 1)}\right)^{1/2}$	
					Source: (Hill.1997)	
					Figure 3.16	
					The mean total cost incurred by the system	
					$C(q^*) = 2 \left(\frac{(A_1 + nA_2)(h_1 + \lambda h_2)D}{2} - \frac{(\lambda - 1)(\lambda^n + 1)}{\lambda(\lambda + 1)(\lambda^n - 1)} \right)^{1/2}$	
					Source: (Hill,1997)	
					Where A_1 = the fixed production setup cost, A_2 = the fixed	
					order/shipment cost, h_1 = the stockholding cost for the vendor,	
					h_2 = the stockholding cost for the buyer, D = the demand rate,	
					P = the production rate for the vendor, $n =$ the number of	
					shipments per production run, $q =$ the size of first shipment, λ	
					= the proportional increase in the size of successive	
					shipments, C = the mean cost incurred by the system per unit	
					time, $P > D$ and $h_2 > h1$.	
10	Optimal strategy	Research Paper	Vishwanath	1998	(Vishwanathan, 1998) discussed two replenishment strategies	As per
	for the integrated vendor-buyer	European	an, S		for integrated vendor-buyer inventory model. The first	(Vishwanathan,1998)
	inventory model	Journal of			strategy replenished the buyer's inventory with equal quantity	equal quantity
		Operational [°]			items each time. The second strategy replenished the vendor's	replenishment is better
		Research			inventory with available inventory of an item so that after	-
					receiving items the buyer's inventory reached to maximum for	holding cost is lower
					the item received.	than the buyer's.

	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
					(Vishwanathan,1998) observed, when there is high	This concept was used
					ratio value of holding cost of the buyer to holding cost of the	by latter research
					vendor, the first strategy of equal item replenishment is more	works where equal
					attractive. Higher production rate with respect to demand rate	quantity replenishment
					gave less overall cost	strategy had been used
	An optimal policy	Research Paper	Hoque, M.	2000	(Hoque&Goyal,2000) had developed optimal policy for a	(Hoque&Goyal,2000)
	for a single-vendor single-buyer	International	A. & Goyal, S. K		single-vendor, single-buyer integrated production system with	had examine equal and
	integrated	Journal of	<u> </u>		equal and unequal size batch shipment between stages and	unequal size shipment
	1	Production Economics			limited capacity to transport items.	lots
	with capacity					
	constraint of the transport					
	equipment.					
	On optimal two-	Research Paper	Hill, R. M.	2000	(Hill,2000) had discussed coordination between two	(Hill,2000) examined
	stage lot sizing and inventory batching	International			successive stages of multi stage production system. He had	coordination between
	policies.	Journal of			classified problem as follows	multi stage production
		Production Economics			Production rate: greater than or less than between stages	system
					Production batch size : greater than or less than between stages.	
					Items transfer type: continuous or in batches	
					He had also observed that equal size batches had given better	
					result.	
13			Goyal, S.	2000	According to (Goyal&Nebebe,2000) had developed a model	(Goyal&Nebebe,2000)
	economic production-	European	K. & Nebebe, F.		for single vendor single buyer. The suggested that the first	worked on lead time
	shipment policy for	A	,			

	Title of paper	Literature	Author	•	Contribution	Gap / Future work
No	. 1 1	type		Year	1, , , 1, 11, 11, ,1, ,, 1, , , , , , ,	1
	a single-vendor- single-buyer system				shipment size should be smaller than rest shipment size and	and tried to reduce by
	single-buyer system	Kesearch			equal to (Rate of product/Rate of demand). It would ensure	reducing size of first
					quick delivery after receiving an order and rest (n-1)	shipment lot.
					shipments would be of equal size. They tried to provide	
					simple alternative policy to determine optimal batch quantity	
					for the vendor, economical number of shipments sent from the	
					vendor to the buyer and economical size of shipments.	
					The annual cost for the vendor-buyer had been given as	
					Figure 3.17	
					The total annual cost of the vendor-buyer $C(n,q) = \frac{(A_1 + nA_2)D}{q(1 + (n-1)x)}$	
					$+\frac{q}{2}\left[h_1\frac{(2D+(P-D)(1+(n-1)x))}{P} + \frac{(h_2-h_1)(1+x^2(n-1))}{(1+x(n-1))}\right].$ Source: (Goyal&Nebebe,2000)	
					Where A_1 = production Set-up cost, A_2 = shipment cost, h_1 =	
					the vendor's holding cost, h_2 = buyer's holding cost, D =	
					annual demand rate, $P = production$ rate, $x = ratio$ of	
					production rate to demand rate (i.e., P/D), $q = size$ of first	
					shipment. N = number of shipments, C = total annual cost	
	Economic	Research Paper	Salameh,	2000	(Salameh&Jaber,2000) extended the traditional EPQ/EOQ	(Salameh&Jaber,2000)
	production quantity model for items	International	M. K. & Jaber, M.		model by taking consideration of imperfect quality items.	did not considered the
	with imperfect	Journal of	Y.		They considered that 100% screening of items and poor	fact there may be also
	quality.	Production Economics			quality would be sold at end of screening process.	some error in screening
		Leonomies				process. Backorder in

Srl.	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
						inventory was also not
					Figure 3.18	considered.
					The buyer's inventory level	
					INVENTORY	
					T	
					py py	
					Source: (Salameh&Jaber,2000)	
					The Economical Order Quantity suggested by	
					(Salameh&Jaber,2000) is given in figure 3.19.	
					Figure 3.19	
					The Economical Order Quantity	
					$y^{\phi} = \sqrt{\frac{2KD \mathbb{E}[1/(1-p)]}{154-55}}$	
					$\mathbf{j}^{-} = \sqrt{h[1 - \mathbf{E}[p] - D(1 - \mathbf{E}[1/(1 - p)])/x]}$	
					Source: (Salameh&Jaber,2000)	
					Where $y = order size$, $K = ordering cost$, $p = percentage of$	
					defective items, $x =$ screening rate, $D =$ demand rate per year,	
					h = holding cost	
15	Observation on: "	Research Paper	Cárdenas-	2000	(Cárdenas-Barrón,2000) found an error in (Salameh&Jaber,	
	Economic		Barrón L.		2000) EOQ formula (given in figure 3.19) and gave the	
			E.			
	model for items with imperfect	Journal of Production			corrected formula as given in figure 3.20.	
	quality".	Economics				
L	quanty .	Leonomies		1		

Srl.	Title of paper	Literature	Author	-	Contribution	Gap / Future work
No		type		Year		
					Figure 3.20 The Economical Order Quantity $y^{+} = \sqrt{\frac{2KDE[1/(1-p)]}{h[1-E[p]-(2)(D/x)(1-E[1/(1-p)]]}}}$ Source: (Cárdenas-Barrón,2000) Where y = order size, K = ordering cost, p = percentage of defective items, x = screening rate, D = demand rate per year, h = helding cost	
16	Recent trends in modeling of deteriorating inventory	Research Paper European Journal of Operation Research	Goyal, S. K. & Giri, B. C.		 h = holding cost (Goyal&Giri,2001) had classified inventory items into following three categories 1. Obsolescence 2. Deterioration 3. No Obsolescence/Deterioration Obsolescence items are those items which loosed their values due to change in technology or introduction of new product. For example spare parts of an aircraft which has been replaced by new advance aircraft. These spare parts loosed its value. Deterioration items are those items that have very short life and after that they loosed their value. These items are also referred as perishable items. For example foodstuff, green vegetables, human blood, medicine with expiry date are fall into deterioration items categories. (Goyal&Giri,2001) had discussed inventory models 	

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
					dealing with deterioration items.	
17	Quality improvement and setup reduction in the joint economic lot size model.	Research Paper European Journal of Operation Research	Affisco, J. F., Paknejad, M. J. & Nasri, F.	2002	 (Affisco et al.,2002) had discussed co-maker concept in which the supplier and purchaser are value chain partner in a manufacturing process. They discussed following three different cases 1 The basic model as given by (Banerjee,1986) 2 Quality Improvement 3 Simultaneous quality improvement and setup cost reduction (Affisco et al.,2002) extended the basic model of (Banerjee,1986) and suggested that the purchaser could go for 100% inspection if the inspection cost is less than the cost of selling defective items. (Affisco et al.,2002) discussed quality improvement of manufacturing process by some investment with an objective to minimize joint total relevant cost (JTRC) and get joint economic lot size (JELS). (Affisco et al.,2002) also discussed simultaneous quality improvement and setup cost reduction. The setup cost reduction allowed smaller JELS. (Affisco et al.,2002) suggested that there should be a continuous quality improvement program and setup cost reduction could be taken as complementary program in manufacturing process 	co-maker in production system and its impact on inventory management

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
18	An integrated vendor-buyer cooperative inventory model for items with imperfect quality.	Production	Huang, C. K.	2002	(Huang,2002), tried to develop a model to determine an optimal integrated vendor-buyer integrated policy for just-in- time (JIT) environment with an aim to minimize the total annual cost incurred by the vendor and the buyer. The model also taken account of imperfect quality items.	
19	Note on: economic production quantity model for items with imperfect quality–a practical approach.	Research Paper International Journal of Production Economics	Goyal, S. K. & Cárdenas- Barrón L. E.	2002		approach for EOQ
20	The economic	Descent Demon	Page Davis	2002	Figure 3.21 The Economical Order Quantity $y = y^{**} = \sqrt{\frac{2KDE[1/(1-p)]}{\hbar}}$ Source: (Goyal&Cárdenas-Barrón,2002) (Pan Dava 2002) develored en integrated model to determine	Author had given more
20	The economic production lot- sizing problem with imperfect production processes and imperfect maintenance.	Research Paper International Journal of Production Economics	Ben-Daya, M.	2002	(Ben-Daya,2002) developed an integrated model to determine Economics Production Quantity (EPQ) and Preventive Maintenance (PM) level for imperfect production process having a deterioration distribution and increasing hazard rate. He found that performing preventive maintenance (PM)	focus on preventive maintenance (PM) of manufacturing

Srl.	Title of paper	Literature	Author		Contribution	Gap / Future work
21	Title of paper An optimal policy for a single-vendor single-buyer integrated production- inventory problem with process unreliability consideration.	Literature type Research Paper International Journal of production economics	Author Huang, C. K.	Publishing Year 2004	Contribution results into reduction quality related cost. As per (Ben- Daya,2002) when preventive maintenance (PM) cost become higher than reduction quality related cost, further preventive maintenance (PM) is not justified. (Huang,2004) tried to get optimal policy for a single-vendor single-buyer integrated production with process unreliability for Just-in-time (JIT). According to (Huang,2004) in JIT the buyer had a problem to know how much quantity could be ordered and the vendor had problems to know economic production batch quantity and number of shipments per order. The inventories of the vendor and the buyer (JIT) Figure 3.22 Figure 3.22 Inventories of the vendor and the buyer (JIT)	inventory management Inventory Management for JIT.

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					The condition to find optimal number of shipments per lot as	
					per (Huang,2004) is given in figure 3.23	
					Figure 3.23 The optimal number of shipments n^* in (JIT) $(n^* - 1)n^* \leq$ $(S_V + S_B) \{2DM((h_B/x) + (h_V/P)) - h_V - 2Dh_B/x + (1 - E[Y])h_B\}$ $(1 - DM/P)Fh_V$ $\leq n^*(n^* + 1)$ Source: (Huang,2004)	
					Using n* as given in figure 3.23, (Huang,2004) given a	
					formula as shown in the figure 3.24 to calculate the size of	
					optimal shipment Q* from the vendor to the buyer.	
					Figure 3.24 The optimal shipment quantity Q* $Q^{*} = \sqrt{\frac{2D[(S_{V} + S_{B})/n + F]M}{[2Dh_{B}/x - (n-2)Dh_{V}/P]M + (n-1)h_{V} - 2Dh_{B}/x + h_{B}(1 - E(Y))}}$ Source: (Huang,2004)	
22	Economic ordering quantity models for items with imperfect quality.	Research Paper International Journal of Production Economics,	Papachristo s, S. & Konstantar as, I	2006	(Papachristos&Konstantaras,2006) had pointed out that conditions for non-shortage of items, as mentioned in (Salamesh&Jaber,2000) and (Chan et al.,2003), did not really prevent occurrence of shortage in the inventory. (Papachristos&Konstantaras,2006) extended (Salamesh&Jaber,2000) model with modified condition.	shortage of items in (Salamesh&Jaber,2000
23	Fuzzy economic production quantity model for items with imperfect	Research Paper International Journal of	Chen, S. H., Wang, C.C., & Chang S.	2007	(Chen et al.,2007) gave a Fuzzy Economic Production Quantity (FEPQ) model with imperfect products where	

	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
	quality.	Innovative Computing, Information and	М.		defective items could be sold at a discount price. In the model	
					cots and quantities represented in fuzzy numbers. They used	
		Control			Graded Mean Integration Representation method to defuzzing	
					and Kuhn-Tucker conditions to find optimal economic	
					production quantity.	
					(Chen et al.,2007) had provided following equation	
					as mentioned in figure 3.25 to calculate Optimal Production	
					Quantity	
					Figure 3.25 The optimal production quantity Q* $Q^* = \sqrt{\frac{2(d_1k_1 + 2d_2k_2 + 2d_3k_3 + d_4k_4)}{2p(d_1h_1 + 2d_2h_2 + 2d_3h_3 + d_4h_4) + (1 - p)^2(h_1 + 2h_2 + 2h_3 + h_4)}}$ Source: (Chen et al.,2007) Where (h1,h2,h3,h4) = fuzzy holding cost, (k1,k2,k3,k4) = fuzzy setup cost, (d1,d2,d3,d4) = fuzzy demand, p = the percentage of defective items in a production lot.	
24	Optimal inventory model for items with imperfect quality and shortage backordering	Research Paper Omega	H. M. Wee, Jonas Yu and M. C. Chen	2007	This research work generalized production lot size model with backordering. It extended the approach of Salameh & Jaber (2000) by considering permissible shortage backordering and the effect of varying backordering cost values. It introduced the concept of backorder due to imperfect quality of production.	reached to zero on

Srl.	Title of paper	Literature	Author	0	Contribution	Gap / Future work
No		type		Year		
					Figure 3.26	after receiving a new
					Inventory system with backorder	lot of items
					Source: (Wee et al.,2007)	
					Figure 3.27 Optimal Order Size y* and Optimal Back Order Size B*	
					$y^* = \sqrt{\frac{(2DK + B^2h + B^2b)E[1/(1-p)]}{h(1 - E[p] - 2(D/x)(1 - E[1/(1-p)]))}},$	
					$B^* = \frac{h}{(h+b)(1/\beta - \alpha)\ln((1-\alpha)/(1-\beta))}.$ Source: (Wee et al.,2007)	
					Where y = order size, D = demand rate, x = screening rate, K = ordering cost, B = maximum backorder quantity allowed, h = inventory holding cost, p = defective percentage, α = minimum value for p, β = maximum value for p.	
25	Economic order quantity for items with imperfect	Research Paper International	Maddah, B. & Jaber, M. Y.	2008	(Maddah&Jaber,2008) considered imperfect quality items and screening process as random function and analyzed	Used renewal theory
	quality: revisited.	Journal of Production Economics			(Salmesh&Jaber,2000) model using renewal theory. They found that effect of screening speed and variation in supply	
					process due to random imperfect items, the order quantity	

Srl.	Title of paper	Literature	Author	0	Contribution	Gap / Future work
No		type		Year		
					calculated by them was larger than (Salmesh&Jaber,2000)	
					model and the same profit was also found lesser. The optimal	
					order quantity is given in figure 3.26. The optimal order	
					quantity of (Salmesh&Jaber,2000) has been given in figure	
					3.19 which was corrected latter by (Cárdenas-Barrón,2000),	
					figure 3.20.	
					Figure 3.28	
					The Economical Order Quantity	
					$y^* = \sqrt{\frac{2KD}{h[E[(1-P)^2] + 2E[P]D/x]}}$	
					Source: (Maddah&Jaber,2008)	
					Where $K = Ordering cost$, $D = Demand Rate$, $h = inventory$	
					holding cost, $x =$ rate of inspection, $y =$ order size, $P =$	
26			C1 11	2010	fraction of defective items in a lot.	
26		Research Paper	Chang, H. C. & Ho,	2010	(Chang&Ho,2010) revisit (Wee et al.,2007) and apply the	1
	solutions for	Omega	C. & 110, C. H.		well-known renewal- reward theorem to obtain a new	product with shortage
	"optimal inventory	0			expected net profit per unit time (gives better result).	backorder
	model for items				They also provided an approach to solve the same problem	
	with imperfect				algebraically from another direction.	
	quality and					
	shortage					
	backordering''					
27	An economic order	Research Paper	Khan, M.,	2011	(Khan et al.,2011) extend the work of (Salameh&Jaber,2000)	Discussed imperfect
	quantity (EOQ) for	International	Jaber, M. Y. &		and introduce the concept that inspection of items for defects	product with shortage
	items with	Journal of Production	Bonney, M.		can also have errors. A defective item can be classified as	backorder and

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
	imperfect quality	Economics			non-defective and non-defective item can also classify as	inspection error
	and inspection				defective. There are two types of inspection errors	
	errors				Type I Error: An inspector may classify a non-defective	
					item as defective	
					Type II Error: An inspector may classify a defective item	
					as non-defective	
					B2 defective items classified as non-defective would be sold	
					in market and latter replaced and stored in inventory.	
					Figure 3.29 Inventory Level over time	
					Source: (Khan et el.,2011) (Khan et el.,2011) derived the formula for calculating the expected annual profit as given in the figure 3.30 and EOQ as given in the figure 3.31.	

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					Figure 3.30	
					Expected annual profit	
					$E[TPU(y)] = sD + \frac{sDE[p]E[m_2]}{(1-E[p])(1-E[m_1])} + \frac{vDE[m_1]}{(1-E[m_1])} + \frac{vDE[p]}{(1-E[p])(1-E[m_1])}$	
					$\frac{D\left[\frac{R}{y} + c + d + c_{f}(1 - E[p])E[m_{1}] + c_{a}E[p]E[m_{2}] + \frac{h}{2}\left\{\left(\frac{2}{k} - \frac{D}{k^{2}} + \frac{E[k^{2}]}{D}\right)y\right\}\right]}{(1 - E[p])(1 - E[m_{1}])}$	
					$_{j}, y E[p] E[m_2]$	
					Source: (Khan et el.,2011)	
					Figure 3.31 Economic Order Quantity (EOQ)	
					$y^{*} = \sqrt{\frac{2KD}{hE[p]E[m_{2}](1-E[p])(1-E[m_{1}]) + hD\left(\frac{2}{x} - \frac{D}{x^{2}} + \frac{E[A^{2}]}{D}\right)}}$	
					Source: (Khan et el.,2011)	
28	Disaggregation and	Research Paper	Yassine,	2012	(Yassine et al.,2012) discussed a tradeoff between	There is no change in
	consolidation of		А.,		disaggregation of imperfect quality items shipment and	assumptions as made
	imperfect quality	International	Maddah, B.		shipped multiple imperfect items during a production	by
	shipments in an	Journal of	& Salameh,		cycle vs. consolidation of imperfect quality items shipment	(Salameh&Jaber,2000)
	extended EPQ	Production	M.		over multiple production cycle where imperfect items for	
	model	Economics			multiple production cycle. (Yassine et al.,2012) showed	
					that disaggregation of imperfect quality items shipment	
					reduced overall inventory management cost.	
29	A note on "Optimal	Research Paper	Hsu, J. &	2012	In (Wee et al.,2007) backorder get clear as soon as new batch	Discussed imperfect
	inventory model for		Hsu, L. (2012b)		of items arrived. It did not consider that inspection of items	product with shortage
	items with	International			need some time. (Hsu&Hsu,2012) had corrected this problem	backorder
	imperfect quality	Journal of			and proposed a model	

Srl. No	Title of paper	Literature type	Author	Publishing Year	Contribution	Gap / Future work
110	and shortage	Industrial		Ital	Figure 3.32	
	backordering"	Engineering			Inventory system with complete backordering (Wee et al.,2007) model	
		Computations			Inventory Level	
					Source: (Hsu & Hsu,2012b)	
					Figure 3.33 Behavior of the inventory level over time for the model corrected by (Hsu, J.& Hsu, L.,2012b)	
					Inventory Level	
					Source: (Hsu&Hsu,2012b)	
					They found the economic order quantity (EOQ) and optimal	
					backorder quantity allowed as shown in the figure 3.34 and	
					expected total profit per unit time as given in figure 3.35	

Srl.	Title of paper	Literature	Author	-	Contribution	Gap / Future wo	ork
No		type		Year			
					Figure 3.34 Economic Order Quantity (EOQ)		
					$y^{*} = \sqrt{\frac{2KD}{h\left\{E[(1-p)^{2}] - R^{2}A_{1} + 2E[p]\frac{D}{x}\right\} - bR^{2}\left(1 + A_{2}\frac{D}{x}\right)}}$		
					$B^* = y^* R$ Where		
					$R = \frac{h(1 - E[p] - A_1D / x + A_2)}{2(hA_1 + b + bA_1D / x)}$		
					$2(nA_1 + b + bA_1D/x)$ Source: (Hsu&Hsu,2012b)		
					Source. (Hsu&Hsu,20120)		
					Figure 3.35		
					Expected Total Profit per unit time (ETPU)		
					$ETPU(B,y) = sD + vD \frac{E[p]}{(1 - E[p])} - \frac{KD}{(1 - E[p])y} - \frac{cD}{(1 - E[p])} - \frac{dD}{(1 - E[p])} - \frac{1}{2}k \frac{DB}{x(1 - E[p])} E\left[\frac{(1 - p)}{(1 - p - \frac{D}{x})}\right]$		
					$-\frac{1}{2}h\left(\frac{xE[(1-p)^{2}]}{(1-E[p])} - \frac{B}{(1-E[p])}E\left[\frac{(1-p)^{2}}{(1-p-\frac{D}{x})}\right] - B + \frac{B^{2}}{y(1-E[p])}E\left[\frac{(1-p)}{(1-p-\frac{D}{x})}\right] - h\frac{E[p]yD}{x(1-E[p])} \\ -\frac{1}{2}bB^{2}\left(\frac{1}{y(1-E[p])} + \frac{D}{xy(1-E[p])}E\left[\frac{1}{(1-p-D)x(1-D)}\right]\right)$		
					$= \frac{1}{2} \frac{DE}{D} \left[\frac{1}{p(1-E[p])} * x_0(1-E[p]) \frac{E}{D} \left[\frac{1}{(1-p-D)(x)} \right] \right]$		
					Source: (Hsu&Hsu,2012b)		
30	Lot sizing in case	Research Paper	Hauck, Z.,	2015	(Hauck, 2015) stated that increasing the speed of inspection	(Hauck,2015)	stared
	of defective items		Vörös, J.		process enables the system to respond fast and save money.	that impact	of
	with investments to	Omega	(2015)		(Hauck,2015) had developed two models. The first model	increasing insp	oection
	increase the speed				always remain in the same state while in second model the	process speed	need
	of quality control				percentage of defective items was different in consecutive lots	more research	work
					and the same time speed of inspection of items was also	and that would	enable
					different. (Hauck,2015) had stated that increasing speed of	to get o	ptimal

Srl.	Title of paper	Literature	Author		Contribution	Gap / Future work
No		type		Year		
					inspection process is controversial. Increasing the speed	inspection process
					reduce total inventory management cost but when percentage	speed.
					of defective items was high and there was backlog of items	
					then it increased total inventory management cost	
31	Optimal Buyer's	Research Paper	Yueli, L.,	2016	(Yueli&Yucheng,2016) extended (Maddah&Jaber,2008)	(Yueli&Yucheng,2016
	Replenishment		Jiangtao M.		model by making assumption that ordering cycle would be) pointed the possibility
	Policy in the	Mathematical	& Yucheng		based on demand rate, number of items in a lot and	of shortage of items at
	Integrated	Problems in	W.		mathematical exception for rate of defects in a lot. By adding	buyer end as defective
	Inventory Model	Engineering			these assumptions they had discussed possibilities of shortage	percentage is a random
	for Imperfect Items.				of items due to random defective items in lots. They had taken	variable.
					two cases. For the first case, extra items were added in lots to	
					avoid shortage for second case they let the shortage happen.	
					For these conditions they tried to find optimal ordering cycle.	
32	Integrated supply	Research Paper	Jindal, P. &	2016	(Jindal&Solanki,2016) had discussed continuous review	Discussed continuous
	chain inventory		Solanki, A.		inventory management and considered order quantity, reorder	review of inventory
	model with quality	International			point, lead time, process quality and backorder price discount	with order quantity,
	improvement	Journal of			and number of shipments as decision variables and tried to	reorder point, lead
	involving	Industrial			minimize total related cost of inventory.	time, process quality
	controllable lead	Engineering			(Jindal&Solanki,2016) had made assumption that buyer was	and backorder price
	time and backorder	Computations			motivating consumers to wait for possible backorder by	discount and number of
	price				giving price discount. They also assumed that items received	shipments as decision
					from the vendor contain defective items. They tried to get	variables

Title of paper	Literature	Author		Contribution	Gap / Future work
	type		Year		
				to minimize total expected cost.	
Inventory Modeling	Research Paper	Khanna,	2017	(Khanna et al.,2017) tried to minimize losses occurred due to	Proposed reworking of
for Imperfect		А.,		production of defective items and proposed reworking on	defective items for
Production Process	International	Kishore, A.		defective items to remove defects. They tried to consider	imperfect production
with Inspection	Journal of	& Jaggi, C.		human error is a reality of life and consider that the rework	and inspection error
Errors, Sales	Mathematical,	K.		process was also imperfect. To improve consumer satisfaction	
Return, and	Engineering			they assumed 100% full price return to consumer on sales	
Imperfect Rework	and			return due to manufacturing defects. They tried to maximize	
Process.	Management			the expected total profit per unit time.	
	Sciences			The pertinence of the model can be found in most	
				manufacturing industries like textile, electronics, furniture,	
				footwear, crockery etc.	
An Integrated	Research Paper	Mukherjee,	2019	(Mukherjee et al.,2019) developed an imperfect inventory for	Discussed investment
Imperfect		A., Dey, O.		integrated single-vendor, single-buyer where the vendor make	to improve quality and
Production-	Information	& Giri,		investment to improve quality of items during production and	price discount as
Inventory Model	Technology and	B.C.		same time the buyer offered price discount to consumers for	incentive for shortage
with Optimal	Applied			backorder as incentive so that consumers could wait for some	of items.
Vendor Investment	Mathematics			time to get their item. Their inventory management had	
and Backorder				followed continuous review by the buyer to place order of	
Price Discount.				items in place of periodic review policy adopted by most of	
				inventory management models. The lot size for an order	
				depends upon lead time, backorders and lost sales.	
	Inventory Modeling for Imperfect Production Process with Inspection Errors, Sales Return, and Imperfect Rework Process. An Integrated Imperfect Production– Inventory Model with Optimal Vendor Investment and Backorder	typeInventory ModelingResearch Paperfor ImperfectInternationalProduction ProcessInternationalwith InspectionJournal ofErrors, SalesMathematical,Return, andEngineeringImperfect ReworkandProcess.ManagementSciencesSciencesAn IntegratedResearch PaperImperfectInformationInventory ModelTechnology andwith OptimalAppliedVendor InvestmentMathematicsand BackorderInformation	typetypeInventory ModelingResearch PaperInventory ModelingResearch Paperfor ImperfectA.,Production ProcessInternationalwith InspectionJournal ofkishore, A.with InspectionJournal ofErrors, SalesMathematical,Return, andEngineeringImperfect ReworkandProcess.ManagementSciencesSciencesAn IntegratedResearch PaperImperfectInformationProduction–InformationInventory ModelZechnology andMith OptimalAppliedVendor InvestmentMathematicsand BackorderIntegratics	typeYearInventory Modeling for ImperfectResearch Paper A.,Khanna, A.,Production ProcessInternational Journal of & Jaggi, C.Kishore, A.with InspectionJournal of Berrors, Sales& Jaggi, C.Errors, SalesMathematical, Management SciencesK.Process.Management Sciences2019An IntegratedResearch Paper InperfectMukherjee, A., Dey, O.2019Inventory ModelTechnology and AppliedB.C.2019with Optimal An BackorderMathematics An BackorderB.C.2019	typeYearImage: Strain

Srl.	Title of paper	Literature	Author	Publishing	Contribution	Gap / Future work
No		type		Year		
					(Mukherjee et al.,2019) derived the optimal expected annual	
					total cost of the integrated system using n-shipment policy.	

4. Research Gap

- The inspection process for imperfect quality production and imperfect inspection process in earlier researches had been conducted by the buyer after receiving a fresh lot of items. This research work tried to examine the impact on integrated inventory management if the inspection process has been conducted by the vendor along with the production of items with and without backorder.
- The buyer, sometime do not want to go for integrated inventory management and tried to optimize costs related to the buyers only. This is referred as the buyer's independent decision. For the buyer's independent decision, inventory management costs of the integrated and independent decisions have been compared.

5. Research Problem

Production schedule, production quantity, quality management, inventory/stock management, items shipment scheduling and meeting customer demands smoothly are some key operations of any organization. Better management of these operations helps an organization to reduce operational costs. Production of non-perishable items may be imperfect and items produced could contain some defective items despite of a number of quality controls measure adopted by the organization. All items undergo the inspection process to ensure that any defective item could not be sell in the market. The inspection process is conducted by human and there is always a chance of error. So the inspection process is also imperfect.

With an objective to reduce inventory costs, a number of researches were conducted to optimize above mentioned operation. Earlier researches assumed that

34

the inspection process had been conducted by the buyer after receiving fresh lot of items. In this research it assumed that inspection process has been conducted along with production of items by the vendor in place by the buyer after receiving a fresh lot. This assumption is more realistic. This research is based on this problem and given a solution for without and with a shortage backorder.

6. Research Objective

- Identify the impact on the total cost of the supply chain management when the inspection is being performed at the vendor site for imperfect production quality and imperfect inspection process.
- Comparative analysis of vendor-buyer collaborative integrated model vs. the buyer's independent decision model.
- Perform Sensitivity Analysis of cost parameters and their impact on total expected cost of inventories management.

7. Assumptions / Hypothesis

This research is based on mathematical modeling. It has only assumptions for conversion into mathematical equations and solutions. For mathematical modeling following assumptions are made.

- The inventory model is for non-perishable items which has a long life span.
- It is single-vendor and single-buyer model.
- The meaning of buyer means the dealers that purchases items from a vendor and sells them to consumers of items.
- The rate of production of items "P" is greater than the rate of demand "D" i.e., P
 D.

- Production lot is greater than supply lot and used to supply number lots to the buyer to meet demand. Number of lots "n" effects lot size and total cost of inventory. The optimal value of "n" is determined by the model.
- "T" is the time duration between two consecutive supplies to the buyer.
- The production process is of imperfect quality and produces some defective items with probability of "p".
- 100% inspection of items has been conducted. The inspection process is also assumed to be imperfect and there are some errors during the inspection. An inspector may classify non-defective items as defective items (Type I inspection error) with probability e₁ or defective items as non-defective items (Type II inspection error) with probability e₂.
- The inspection rate "x" is greater than the production rate "P" i.e., x > P.
- Items classified as defective are disposed at discounted rate.
- Defective items B₂, which are classified as non-defective items by an inspector (type II inspection error), sold at market and later returned back by consumer under warranty, are sent back to the vendor and disposed at discounted rate.
- As there are some items being produced defective, B₁ additional items are produced for each lot items Q making it to Q + B₁ items.
- In this research work, first two models (without backorder Integrated Model and The buyer's independent decision model) do not allow a shortage of items in the inventory and next two models (with backorder – Integrated Model and The buyer's independent decision model) allow a shortage of items with consent from the buyer that he/she will wait for fresh lot items to arrive.

8. Scope of the Research

- The research is for single vendor and single buyer.
- Only non-perishable items have been considered for this research work.
- The demand rate, production rate, percentage of defective items in production lot, inspection rate, type I and type II inspection errors are deterministic and known probability distribution.
- This research focuses on imperfect production quality items with imperfect inspection process.

9. Research Methodology

The research is based on mathematical modelling. Assumptions are made to represent the real life situation of inventory management. The inventory management situations have also been represented through figures. Using assumptions and figures inventory management related costs are translated into mathematical equations. This research has the following four models

- Integrated model where backorder has not been allowed
- The Buyers independent decision where backorder has not been allowed
- Integrated model where backorder has been allowed
- The Buyers independent decision where backorder has been allowed

Following are formulation of cost for the vendor

Inventory Carrying cost for the vendor

$$= n(Q+B_1)\left\{\frac{Q}{p} + (n-1)T\right\} - \frac{1}{2}n(Q+B_1)\frac{n(Q+B_1)}{p} - \left\{\frac{Q}{p} + (n-1)T - \frac{n(Q+B_1)}{p}\right\}nB_1 - \frac{n(n-1)TQ}{2}$$

after solving

$$= \frac{h_{\nu}}{2P} \left[(2n - n^2)Q^2 + n(n-1)PTQ + n^2B_1^2 \right]$$

Setup Cost

Warranty Cost
$$= n(Q + B_1)pC_w = \frac{npc_wQ}{1 - \{p(1-e_2) + (1-p)e_1\}} = \frac{npc_wQ}{A}$$

Type I Error $= n(Q + B_1) (1 - p) e_1C_r = \frac{n(1-p)e_1C_rQ}{1 - \{p(1-e_2) + (1-p)e_1\}} = \frac{n(1-p)e_1C_rQ}{A}$
Type II Error $= n(Q + B_1)pe_2C_{av} = \frac{npe_2C_{av}Q}{1 - \{p(1-e_2) + (1-p)e_1\}} = \frac{npe_2C_{av}Q}{A}$
Inspection Cost $= n(Q + B_1)C_i = \frac{nC_iQ}{1 - \{p(1-e_2) + (1-p)e_1\}} = \frac{nC_iQ}{A}$
Where $B_1 = \frac{p(1-e_2) + (1-p)e_1}{1 - \{p(1-e_2) + (1-p)e_1\}}Q$

 $= S_v$

Total cost for the vendor $TC_{v}(n, Q)$ is

$$TC_{v}(n,Q) = S_{v} + \frac{npc_{w}Q}{A} + \frac{n(1-p)e_{1}C_{r}Q}{A} + \frac{npe_{2}C_{av}Q}{A} + \frac{nC_{i}Q}{A} + \frac{h_{v}}{2P} \Big[(2n - n^{2})Q^{2} + \frac{n(n-1)(1-p)(1-e_{1})PQ^{2}}{AD} + \frac{n^{2}\{p(1-e_{2})+(1-p)e_{1}\}^{2}Q^{2}}{A^{2}} \Big]$$

Where $A = 1 - \{p(1 - e_2) + (1 - p)e_1\}$

Following are formulation of cost for the buyer

$$TC_b(n,Q) = K + nF + \frac{nc_{\alpha\beta}pe_2Q}{1 - \{p(1-e_2) + (1-p)e_1\}} + \frac{nh_b}{2D} \frac{[1 - \{p(1-2e_2) + (1-p)e_1\}](1-p)(1-e_1)}{[1 - \{p(1-e_2) + (1-p)e_1\}]^2}Q^2$$

The total cost of the integrated inventory management without shortage backorder $TC_{c}(n,Q) = S_{v} + \frac{npc_{w}Q}{A} + \frac{n(1-p)e_{1}C_{r}Q}{A} + \frac{npe_{2}C_{av}Q}{A} + \frac{nC_{i}Q}{A} + \frac{h_{v}}{2P} \Big[(2n - n^{2})Q^{2} + \frac{n(n-1)(1-p)(1-e_{1})PQ^{2}}{AD} + \frac{n^{2}\{p(1-e_{2})+(1-p)e_{1}\}^{2}Q^{2}}{A^{2}} \Big] + K + nF + \frac{nc_{\alpha\beta}pe_{2}Q}{A} + \frac{nh_{b}}{2D} \frac{[1-\{p(1-2e_{2})+(1-p)e_{1}\}](1-p)(1-e_{1})}{A^{2}} Q^{2}$

There are probabilities for a defective percentage of items, type I inspection errors and type II inspection errors. For these probabilities, the theory of expectation has been used to get expected values. The costs have been calculated for one production cycle. Renewal and Reward theorem has been used to get expected costs of inventory management from one production cycle.

Numbers of shipments per order and economic order quantity (EOQ) of inventory management have been derived by optimization inventory management costs.

Earlier research works had been tested by a numerical example. During the literature review, it has been found that all these researches had been using the same numerical values for different parameters like demand, production rate etc. The equation for optimal total expected cost and economical order quantity for all models of this research have been calculated and found that these total expected costs are lower among earlier research works. Using these numerical examples, sensitivity analysis has been performed.

10. Data Analysis

This research is based on mathematical modeling and does not have any primary data. Mathematical models are based on assumptions. Numerical examples using commonly used numerical values (by earlier researches) generate some data values. Sensitivity analysis also generates data values. Analysis of these data has been done in the research.

11. Finding and Conclusions

Total expected costs with economic order quantity (EOQ) for integrated models without and with shortage backorder have been given in the table given below

Comparison of the integrated models		
Values	Without backorder	With backorder
minimum Expected Total Cost (ETC) (in \$)	2,01,226.23\$	2,00,516.06\$
Economic Lot Size (number of items)	769.4	919.8
Optimum Backorder quantity (number of items)	NIL	306.6

Comparison of the integrated models

The above result shows that for the integrated inventory management

where shortage backorder has been allowed is a better option.

Values	Without backorder	With backorder
minimum Expected Total Cost (ETC) (in \$)	208459.45\$	2,11,694.62\$
Economic Lot Size (number of items)	1581.35	1224.59
Optimum Backorder quantity (number of items)	NIL	408.20

Comparison of the buyer's independent decision models

The above result shows that for the buyer's independent decision inventory management is not good when it is compared with the integrated inventory management. It also shows that allowing shortage backorder is not a good decision for the buyer independent decision inventory management. Whereas allowing shortage backorder is a good decision for integrated inventory management.

Sensitivity of the total expected cost with change in different parameters in inventory management has been analyzed in the thesis.

12. Contributions

The four mathematical models with and without shortage backorder for integrated and buyer independent decision has been derived successfully. These models considered for imperfect production quality, imperfect inspection process and inspection process done by the vendor along with the production of items. The total expected cost of inventory management of these models is below with respect to earlier similar models. Second, models are derived for the situation where the buyer takes independent decisions on economic order quantity. These models are compared with integrated models. Third, Analysis of outcomes of numerical outcomes gives insight of an inventory management which would help manufacturing industry to take correct decisions. For example, allowing a shortage of backorder in the buyer's independent decision is a wrong decision. But, allowing a shortage backorder in the integrated model is a welcome decision. For cutting down the total expected cost further, the sensitivity analysis will help the industry to find the areas where they could invest to get the maximum outcome of their investment.

Earlier research works on imperfect production quality and inspection error had assumed the inspection of items was conducted by the buyer after receiving items from the vendor. As mentioned in the research gap, in this research has focus on inspection process at the vendor site along with production of items and compares the expected total cost and found lower expected total cost. This outcome will help manufacturing industries to decide which place of inspection (the vendor site or the buyer site) will be beneficial for them. If they will go for inspection process at the vendor site then from four different models discussed in the research work will help them to take correct decision.

13. Limitations and Scope for future research

The efficiency of inspectors and their idle time have not been covered in this research and could be taken in future work. The Impact of inspection errors on the total expected cost is found very high in the research. The Impact of tanning and the use of advanced equipment would reduce the total expected cost significantly. Analysis of the use of tanning and advanced types of equipments has not been covered in the research and could be taken as further research work.

14. Keywords

Supply-Chain Management, Inventory Management, Expected Total Cost, Economic Order Quantity (EOQ), Imperfect Production, Imperfect Inspection

Bibliography

- Affisco, J. F., Paknejad, M. J., & Nasri, F. (2002). Quality improvement and setup reduction in the joint economic lot size model. *European Journal of Operation Research*, 142(3), 497-508.
- Banerjee, A. & Kim, S. L. (1995). An integrated JIT inventory model. International Journal of Operation & Production management, 15(9), 237-244.
- Banerjee, A. (1986). A joint economic-lot-size model for purchaser and vendor. Decision sciences, 17(3), 292-311.
- Ben-Daya, M. (2002). The economic production lot-sizing problem with imperfect production processes and imperfect maintenance. *International Journal of Production Economics*, 76(3), 257–264.
- Benkherouf, L. (1995). On an inventory model with deteriorating items decreasing time-varying and shortages. *European Journal of operational Research*, 86(2), 293-299.
- Cárdenas-Barrón L. E. (2000). Observation on: " Economic production quantity model for items with imperfect quality". *International Journal of Production Economics*, 67(2), 201-201.
- Chen, S. H., Wang, C.C., & Chang S. M. (2007). Fuzzy economic production quantity model for items with imperfect quality. *International Journal of Innovative Computing, Information and Control*, 3(1), 85 – 95.
- Goyal, S. K. & Cárdenas-Barrón L. E. (2003). Note on: An optimal batch size for a production system operating under periodic delivery policy. *Computers & Industrial Engineering*, 44(1), 191–192.

- Goyal, S. K. & Cárdenas-Barrón L. E. (2002). Note on: economic production quantity model for items with imperfect quality–a practical approach. *International Journal of Production Economics*, 77(1), 85–87.
- Goyal, S. K., & Giri, B. C. (2001). Recent trends in modeling of deteriorating inventory. *European Journal of Operation Research*, *134*(1), 1-16.
- Goyal, S. K. & Nebebe, F. (2000). Determination of economic production-shipment policy for a single-vendor-single-buyer system. *European Journal of Operational Research*, 121(1), 175-178.
- Goyal, S. K. (1977a). An integrated inventory model for a single supplier single customer problem. *The International Journal of Production Research*, 15(1), 107-111.
- Goyal, S. K. (1988). A joint economic-lot-size model for purchaser and vendor: A Comment. *Decision sciences*, *19*(1), 236-241.
- Goyal, S. K. (1995). A one-vendor multi-buyer integrated inventory model: A comment. *European Journal of Operational Research*, 82(1), 209-210.
- Hauck, Z., & Vörös, J. (2015). Lot sizing in case of defective items with investments to increase the speed of quality control. *Omega*, 52, 180-189.
- Hill, R. M. (1997). The single-vendor single-buyer integrated production-inventory model with a generalised policy. *European journal of operational research*, 97(3), 493-499.
- Hill, R. M. (2000). On optimal two-stage lot sizing and inventory batching policies. *International Journal of Production Economics*, 66(2), 149-158.

- Hoque, M. A., & Goyal, S. K. (2000). An optimal policy for a single-vendor singlebuyer integrated production–inventory system with capacity constraint of the transport equipment. *International Journal of Production Economics*, 65(3), 305-315.
- Hsu, J., & Hsu, L. (2012a). An integrated single-vendor single-buyer productioninventory model for items with imperfect quality and inspection errors.
 International Journal of Industrial Engineering Computations, 3(5), 703-720.
- Hsu, J. & Hsu, L. (2012b). A note on "Optimal inventory model for items with imperfect quality and shortage backordering". *International Journal of Industrial Engineering Computations*, 3(5), 939-948.
- Huang, C. K. (2002). An integrated vendor-buyer cooperative inventory model for items with imperfect quality. *Production Planning & Control*, 13(4), 355-361.
- Jindal, P., & Solanki, A. (2016). Integrated supply chain inventory model with quality improvement involving controllable lead time and backorder price discount. *International Journal of Industrial Engineering Computations*, 7(3), 463–480.
- Khan, M., Jaber, M. Y., & Bonney, M. (2011). An economic order quantity (EOQ) for items with imperfect quality and inspection errors. *International Journal of Production Economics*, 133(1), 113–118.
- Khanna, A., Gautam, P., & Jaggi, C. K. (2017). Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing. *International Journal of Mathematical, Engineering and Management Sciences*, 2(2), 110-124.

Khanna, A., Kishore, A., & Jaggi, C. K. (2017a). Inventory Modeling for Imperfect Production Process with Inspection Errors, Sales Return, and Imperfect Rework Process. *International Journal of Mathematical, Engineering and Management Sciences*, 2(42), 242–258.

- Lee, H. L., & Rosenblatt, M. J. (1987). Simultaneous determination of production cycle and inspection schedules in a production system. *Management Science 33*(9), 1125-1136.
- Lu, L (1995). A one-vendor multi-buyer integrated inventory model. *European Journal* of Operational Research, 81(2), 312-323.
- Maddah, B., & Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality: revisited. *International Journal of Production Economics*, 112(2), 808-815.
- Mukherjee, A., Dey, O., & Giri, B. C. (2019). An integrated imperfect production– inventory model with optimal vendor investment and backorder price discount.
 In *Information Technology and Applied Mathematics* (pp. 187-203). Springer, Singapore.
- Papachristos, S., & Konstantaras, I. (2006). Economic ordering quantity models for items with imperfect quality. *International Journal of Production Economics*, 100(1), 148-154.
- Salameh, M. K., & Jaber, M. Y. (2000). Economic production quantity model for items with imperfect quality. *International journal of production economics*, 64(1-3), 59-64.

- Vishwanathan, S. (1998). Optimal strategy for the integrated vendor-buyer inventory model. *European Journal of Operational Research*, *105*(1), 38-42.
- Wee, H. M., Yu, J., & Chen, M. C. (2007). Optimal inventory model for items with imperfect quality and shortage backordering. *Omega*, *35*(1), 7-11.
- Yassine, A., Maddah, B., & Salameh, M. (2012). Disaggregation and consolidation of imperfect quality shipments in an extended EPQ model. *International Journal of Production Economics*, 135(1), 345-352.
- Yueli, L., Jiangtao, M., & Yucheng, W. (2016). Optimal buyer's replenishment policy in the integrated inventory model for imperfect items. *Mathematical Problems in Engineering*, 2016.